Explicit formulae for J−spectral factors for well-posed linear systems

نویسندگان

  • Ruth F. Curtain
  • Amol J. Sasane
چکیده

The standard way to obtain explicit formulas for spectral factorization problems for rational transfer functions is to use a minimal realization and then obtain formulae in terms of the generators A, B, C and D. For well-posed linear systems with unbounded generators these formulae will not always be well-defined. Instead, we suggest another approach for the class of well-posed linear systems for which zero is in the resolvent set of A. Such a system is related to a reciprocal system having bounded generating operators depending on B, C, D and the inverse of A. There are nice connections between well-posed linear systems and their reciprocal systems which allow us to translate a factorization problem for the well-posed linear system into one for its reciprocal system, the latter having bounded generating operators. We illustrate this general approach by giving explicit solutions to the sub-optimal Nehari problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recurrences and explicit formulae for the expansion and connection coefficients in series of the product of two classical discrete orthogonal polynomials

Suppose that for an arbitrary function $f(x,y)$ of two discrete variables, we have the formal expansions. [f(x,y)=sumlimits_{m,n=0}^{infty }a_{m,n},P_{m}(x)P_{n}(y),] $$‎ ‎x^{m}P_{j}(x)=sumlimits_{n=0}^{2m}a_{m,,n}(j)P_{j+m-n}(x)‎,$$ ‎we find the coefficients $b_{i,j}^{(p,q,ell‎ ,‎,r)}$ in the expansion‎ $$‎ ‎x^{ell }y^{r},nabla _{x}^{p}nabla _{y}^{q},f(x,y)=x^{ell‎ ‎}y^{r}f^{(p,q)}(x,y) =sumli...

متن کامل

A descent method for explicit computations on curves

‎It is shown that the knowledge of a surjective morphism $Xto Y$ of complex‎ ‎curves can be effectively used‎ ‎to make explicit calculations‎. ‎The method is demonstrated‎ ‎by the calculation of $j(ntau)$ (for some small $n$) in terms of $j(tau)$ for the elliptic curve ‎with period lattice $(1,tau)$‎, ‎the period matrix for the Jacobian of a family of genus-$2$ curves‎ ‎complementing the classi...

متن کامل

Normalized doubly coprime factorizations for infinite-dimensional linear systems

We obtain explicit formulas for normalized doubly coprime factorizations of the transfer functions of the following class of linear systems: the input and output operators are vector-valued, but bounded, and the system is input and output stabilizable. Moreover, we give explicit formulas for the Bezout factors. Using a reciprocal approach we extend our results to a larger class where the input ...

متن کامل

The Suboptimal Nehari Problem for Well-Posed Linear Systems

We solve the suboptimal Nehari problem for a transfer function that has a state-space realization as a system-stable (input, output and inputoutput stable) well-posed linear system. We obtain an explicit solution in terms of the state-space parameters.

متن کامل

Interconnected Systems with Uncertain Couplings: Explicit Formulae for mu-Values, Spectral Value Sets, and Stability Radii

In this paper we study the variation of the spectrum of block-diagonal systems under perturbations of compatible block structure with fixed zero blocks at arbitrarily prescribed locations (“Gershgorin-type perturbations”). We derive explicit and computable formulae for the associated μ-values. The results are then applied to characterize spectral value sets and stability radii for such perturbe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002